'비트코인 블록체인'에 해당되는 글 3건

  1. 2017.08.15 이더리움 프로그래밍 수업(3)
  2. 2017.08.05 이더리움 프로그래밍 수업(2)
  3. 2017.08.02 이더리움 프로그래밍 수업(1) (4)

이더리움 프로그래밍 수업(3)


들어가며


지난 두 번의 글을 통해 우리는 이더리움의 코어 엔진인 geth 를 다루는 다양한 방법에 대해 살펴보았습니다. 앞으로는 2회에 걸쳐 솔리디티를 이용해 컨트랙을 프로그래밍하는 방법에 대해 살펴보겠습니다. 특히, 단순 개발 뿐만 아니라 실제 해당 컨트랙이 어떻게 geth의 EVM 을 통해 실행되고 이 때 어떤 과정들을 거치는 지도 함께 살펴 보겠습니다.


// 첫번째 아주 간단한 예제 : Greeter.sol        

 

다음 예제 프로그램은 Greeter.sol 이라는 아주 간단한 솔리디티 프로그램입니다. Solidity-baby-steps에서 제공되는 첫번째 예제입니다. https://github.com/fivedogit/solidity-baby-steps ) 단계별로 많은 예제들이 모여 있어 해당 예제를 분석하면서 솔리디티 매뉴얼을 함게 보시면 솔리디티 프로그래밍을 익히는 데 효과적입니다.

 

아래 예제는 greet()를 호출할 때 마다 입력받은  스트링을 반환해주는 단순한 프로그램 입니다. 이 프로그램을 통해 솔리디티로 작성한 스마트 컨트렉트 프로그램의 구조를 이해해 보겠습니다. 

 

pragma solidity ^0.4.0;

contract Greeter        

{

    address creator;    

    string greeting;    

 

    function Greeter(string _greeting) public  

    {

        creator = msg.sender;

        greeting = _greeting;

    }

 

    function greet() constant returns (string)         

    {

return greeting;

    }

   

    function getBlockNumber() constant returns (uint)

    {

        return block.number;

    }

    function setGreeting(string _newgreeting)

    { 

        greeting = _newgreeting;    

     }

    function kill()

    {

        if (msg.sender == creator) 

        suicide(creator);      

    }

}

[ 3-1 ] Greeter.sol

 

하나씩 분해해서 살펴 보겠습니다.

 

pragma solidity ^0.4.0;

이 소스 파일은 0.4.0 보다 이전 버전의 컴파일로 컴파일 하지 마세요. 그리고 ^는 버전 0.5.0로 시작하는 컴파일러에서도 작동하지 않는다 라는 의미입니다. 항상 pragma 버전은 선언이 되어야 합니다

 

contract Greeter  {   }

Greeter 라는 컨트렉을 만든다 라는 것이고 하나의 파일에 여러개의 컨트렉을 정의하고 사용할 수 있습니다.

 

address creator;  string greeting;    

Greeter의 상태를 선언하는 것 입니다. address 데이타 타입의 creator와 string 데이타 타입의 greeting을 상태로 선언합니다. address는 20바이트(160 bit, 이더리움의 어드레스 사이즈) 로 산출연산을 할 수 없기 때문에 컨트랙의 주소나 키값 등을 저장하는 데 용의합니다. 또한 balance와 transfer를 멤버로 갖습니다.

 

가령, address myaddress = this; 라는 의미는 현재 이 컨트랙의 주소를 말하는 데 myaddress의 balace는 현재 이더 금액을 그리고 myadress.transfer(금액)은 해당 금액 만큼 내게 전송한다 라는 의미입니다.  아주 많이 이용되는 Value Type 중 하나입니다. 그리고 string은 UTF8 으로 인코딩되었고 크기가 지정되지 않은 임의 크기를 갖는 타입입니다. 


function Greeter(string _greeting) public { }

상태를 선언했다면 해당 상태를 바꿀, 실행할 수 있는 코드 단위인 함수를 선언하고 작성해야 합니다. 이 때 function 키워드를 사용하여 함수를 선언합니다. 위의 함수 선언은 Greeter라는 컨트랙 이름과 동일합니다. 생성함수로서 Creeter 컨트랙이 생성되는 순간 자동으로 호출되어 실행됩니다. strng 타입의 _geeting을 입력받도록 선언되어 있습니다. public 키워드는 외부에서도 호출이 될 수 있도록 지정하는 것 입니다. 

 

참고로 , 여기서 모든 설명을 할 수는 없지만 다음은 솔리디티에서 사용하는 함수 선언 방식입니다. 가령, internal은 내부에서만 사용하기 때문에 외부로 보여지지 않습니다. 쉽게 말해 Remix에서도 접근이 안되니 실행이 안됩니다. Payable은 실행을 할 때 이더(Ether)를 대가로 받는 함수입니다. 모두 미리 상세히 알고 있을 필요는 없습니다. 실제 개발을 하며 하나씩 하나씩 적용하며 익히는 것이 가장 효율적입니다.


function (<parameter types>) {internal|external} [constant] [payable] [returns ,!<return types>)]

 

creator = msg.sender;

선언하지 않았는데 갑자기 나타난 변수가 있습니다. msg 입니다. msg는 컨트랙을 생성한 사람의 어드레스를 영구적으로 저장하고 있는 글로벌 변수로서 블록체인에 접근해서 다양한 정보를 획득할 수 있습니다. msg.sender는 현재 함수를 호출한 사람의 주소를 알려준다. 호출자를 확인 후 제약할 수 있어 유용하게 사용된다.

 

function greet() constant returns (string)         

greet 함수는 변하지 않는 상수 타입의 스트링을 반환하는 함수라는 것을 말한다.

 

function getBlockNumber() constant returns (uint)

getBlockNumber 함수에는 앞서 선언하지 않았지만 block.number 이라는 것이 사용된다. msg처럼 block은 블록체인에 대한 정보에 접근할 수 있는 글로벌 변수이다. block.number 는 현재 블록의 넘버를 알려준다. 현재 블록의 gas limt을 알고 싶다면 block.gaslimit을 사용하면 된다. msg,block,tx 등은 아주 유용한 글로벌 변수로서 잘 이해하는 것이 필요하다.

 

function kill()

마지막에 나오는 kill 이라는 무시무시해 보이는 함수는 내부에서 suicide는 호출한다. suicide는 self descruct를 말하는 데 해당 컨트랙을 kill하고 남은 금액을 모두 생성한 사람에게 보내라는 것이다. 이를 위해  if (msg.sender == creator)    msg.sender가 creator인지 체크한 후  맞다면 컨트랙을 모두 suicide 하고 남은 금액을 반환하게 된다. 

 

//Remix에서 실행 - Greeter 컨트랙 배포

 

해당 소스를 오타 없이 입력했다면 Remix에서 제대로 실행이 될 것 입니다. 다음은  "how are you"  문자열을 입력하고 <<Create>> 버튼을 통해 배포된 Greeter의 실행 화면 입니다.  greet 함수의 value를 보면 "how are you"  문자열이 실제 utf8으로 인코딩되어 있는 실제값을 볼 수 있습니다.

 

[3-2] Greeter 컨트랙 배포

 

setGreeting 함수에 "반갑습니다." 라는 문자열을 입력하고 실행을 시켜 보겠습니다. 정상적으로 실행이 된 후 , 다시 greeet 함수를 실행하면 기존 greeting의 상태가  "how are you"  문자열에서 "반갑습니다." 로 변경된 것을 확인할 수 있습니다.

 


[3-3]  setGreeting 함수 실행

 

kill 함수를  실행시켜 보겠습니다.  앞서 설명 드린 것처럼 kill 함수는 suicide를 호출하여 해당 컨트랙을 삭제합니다. kill 함수 실행 후 , 다시 setString 함수를 실행시키면  Kill에 의해 해당 컨트랙이 삭제된 상태이기 때문에  TypeError 가 발생하는 것을 확인할 수 있습니다.

 


[3-4] kill 함수 호출 후 결과

 

잠시 이해를 돕기 위해 컴파일된 컨트랙의 상세 정보에 대해 살펴보겠습니다. <<iContract details (bytecode, interface etc.)>> 링크를 클릭하면 컨트랙의 상세 정보를 볼 수 있습니다. 상세 정보 중 다음의 주요한 것들만 정리해 봅니다.

 

- Bytecode & Runtime Bytecode

 

60606040526000357c0100000000000000000000000000000000000000000000000000000000900………………<중략생략>………………………....……………………………………………………………………...……11561039a576000816000905550600101610382565b5090565b905600a165627a7a723058203a53b67dee629a7ee6cd6008427d8043c1a2c8d30759ffba5d3b68e055e3c91e0029

 

솔리디티로 작성된 프로그램은 컴파일된 후 아래와 같은 형태의 바이트코드로 변환이 됩니다. 이 바이트 코드는 블록체인을 통해 각 노드에 배포가 됩니다. 배포후에는 주소(address)가 생성이 됩니다. 

 

이 바이트코드 중 가령, setGreeting 이라는 함수가 실행이 되면 이 실행 내용이 블록체인의 각 노드에 이 사실이 전파됩니다. 그리고 해당 트랜젝션이 문제가 없다면 블록에 해당 내용이 추가됩니다. 이렇게 수행중인 바이트코드가 Runtime Bytecode 입니다.

 

Interface


[{"constant":false,"inputs":[],"name":"kill","outputs":[],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":"getBlockNumber","outputs":[{"name":"","type":"uint256"}],"payable":false,"type":"function"},{"constant":false,"inputs":[{"name":"_newgreeting","type":"string"}],"name":"setGreeting","outputs":[],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":"greet","outputs":[{"name":"","type":"string"}],"payable":false,"type":"function"},{"inputs":[{"name":"_greeting","type":"string"}],"payable":false,"type":"constructor"}]

 

Greeter 컨트랙의 터페이스입니다. 인터페이스는 구현된 코드가 없는 추상화된 명세입니다. 이 니터페이스가 Web3.js를 통해 바이너리에 접근할 때 사용하는 ABI(Application Binary Interface)로 활용됩니다.  가령, 자바 스크립트 언어 상에서 var greeterABI = [{"constant" … "constructor"}]; 으로 지정 후 web3.eth.contract(greeterABI) 이렇게 호출하여 인터페이스를 사용합니다. 

 

 

Web3 deploy

 

지난 글에서도 설명했듯이 컨트랙은 Web3.js를 통해서 JSON RPC를 통해 자바 스크립트로 제어가 가능합니다. 이를 위해서는 Greeter 컨트랙이 Web3.js에서 접근할 수 있도록 deploy가 되어야 합니다.

 

var _greeting = /* var of type string here */ ;
var localhost_solidity-baby-steps_contracts_05_greeter_sol_greeterContract = web3.eth.contract([{"constant":false,"inputs":[],"name":"kill","outputs":[],"payable":false,"type":"function"},{"constant":true,"inputs":...................<<중략>>
var localhost_solidity-baby-steps_contracts_05_greeter_sol_greeter = localhost_solidity-baby-steps_contracts_05_greeter_sol_greeterContract.new(
   _greeting,
   {
     from: web3.eth.accounts[0], 
     data: '

60606040526000357c0100000000000000000000000000000000000000000000000000000000900………………<중략생략>………………………....……………………………………………………………………...……11561039a576000816000905550600101610382565b5090565b905600a165627a7a723058203a53b67dee629a7ee6cd6008427d8043c1a2c8d30759ffba5d3b68e055e3c91e0029

', 
     gas: '4300000'
   }, function (e, contract){
    console.log(e, contract);
    if (typeof contract.address !== 'undefined') {
         console.log('Contract mined! address: ' + contract.address + ' transactionHash: ' + contract.transactionHash);
    }
 })

 

 

Meta data & Meta data location

 

{"compiler":{"version":"0.4.14+commit.c2215d46"},"language":"Solidity","output":{"abi":[{"constant":false,"inputs":[],"name":"kill","outputs":[],"payable":false,"type":"function"},{"constant":true,"inputs":[],"name":"getBlockNumber","outputs":[{"name":"","type":"uint256"}]......중략.......,"libraries":{},"optimizer":{"enabled":false,"runs":200},"remappings":[]},"sources":{"localhost/solidity-baby-steps/contracts/05_greeter.sol":{"keccak256":"0x5fe8bd1258cf319ac111e904ea5954e93630b1c77a66fd77095a4587670454af","urls":["bzzr://9a434bbf17d4662bd0bc822cd9cba702cc5c6828f608fa9c3cc26b086e49b1c7"]}},"version":1}

 

솔리디티 컴파일러는 자동으로 JSON 타입으로 해당 컨트랙의 메타 데이타를 생성한다. 이 메타 데이타 파일은 컴파일러의 버전, 사용된 개발 언어, ABI 등 해당 바이트 코드의 안정성을 체크하고 컨트랙과 보안 안전하게 상호작용하기 위해 필요한 정보들이 담겨 있다. 메타 데이타 파일은 Swarm 이라는 이더리움 분산 파일 시스템에 저장되고 조회될 수 있다. Swarm 에 접근할 때 사용하는 URL 이 bzzr이다.  메타파일의 마지막에는 Swarm에 접근하는 프로토콜이 선언되어 있다. -["bzzr://9a434bbf17d4662bd0bc822cd9cba702cc5c6828f608fa9c3cc26b086e49b1c7"]

 

 

Opcodes와 Assembly

 

컨트랙은 컴파일 후 바이트코드로 변환이 됩니다실제 이 바이트 코드는 1바이트 크기의 OpCode들로 분해되어 EVM의 스택에 쌓인 후 EVM에 의해서 실행이 됩니다. 다시 말해, 모여진 OpCode들의 실행이 바로 해당 컨트랙의 트랜젝션입니다. 현재 OpCode들은 Stop과 산술연산자, 각종 로직 연산자 , SHA3 , 환경 정보 , 블럭 정보, Stack/Memory/Storage와 플로우 연산자 , push 연산자, duplication 연산자 , Exchange 연산자 , 시스템 연산자 , 앞서 kill()에서 사용한 suicide 같은 self descruct연산자 등 많은 OpCode가 있습니다.

 

 [3-5] Opcodes와 Assembly

 

각 OpCode들을 실행을 하려면 실행 대가로 Gas를 제공해야 합니다. Gas를 제공하는 이유는 앞서도 설명했지만 해당 OpCode의 이상유무를 체크하고 이상이 없다면 블록에 등록하는 절차를 수행하는 마이너들에 대한 대가이자 , DDos 공격 등을 막기 위한 방법으로 사용됩니다. 지난 2016년 9월 해커들이 이더리움 네트웍에 지속적인 DDos 공격을 하여 정상적인 운영이 안된 문제가 있었습니다. 해커들이 서로 다른 계좌에 다수의 빈 트렌젝션을 발생시키고 사용하지 않는 빈 어카운트를 무한정 생성하여 이더리움 메모리를 소비해 버리는 공격이었습니다. 

  이 때 , 이더리움은 공격에 사용된 일부 OpCode의 Gas 비용을 높이고 발신자가 소비하는 리소스에 비례하여 강제로 수수료를 지불하게 하는  메이져 업그레이드(하드포크)를 한 적이 있습니다.  보다 자세한 OpCode와 Gas 등에 대한 내용은 Gavin Wood가 작성한 Ethereum Yellow Page를 참조하기 바랍니다.


마치는 말

 

새로운 컨트랙 기능 추가가 될 때 마다 OpCode가 추가될 터이고 , 이중 분명히 문제가 있는 OpCode들이 있을 것 입니다. 이 취약한 OpCode들로 인해 문제가 발생할 때 마다 메이저 업그레이드가 생긴다면 이더리움의 기술 신뢰성과 가치에 큰 영향을 줄 것 같습니다. 본질적으로 이더리움의 성능 향상을 위한 이더리움 커뮤니티의 노력이 필요한 것 같습니다. 이러한 부분에 관심이 많다면 Qtum과 EOS 프로젝트를 살펴보면 많은 새로운 관점을 얻으실 것 입니다. 그리고 최근에 MS에 발표한 Coco 프레임웍도 현재 이더리움에서 해결해야 할 여러 이슈들을 해결하는 데 주안점을 두고 있습니다. 나중 기회가 되면 함께 살펴보면 좋을 것 같습니다.


이번에는 컨트랙 프로그램의 기초에 대해 살펴보았습니다. 다음에는 좀 더 복잡하고 솔리티디의 다양한 언어적 특성을 이해할 수 있는 예를 분석해보겠습니다. 참고로 , 모두 아시다시피 개발 언어는 직접 작은 것이라도 하나를 직접 작성해 보면서 경험을 늘리는 것이 가장 중요합니다.

     








저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

Posted by 박재현


이더리움 프로그래밍 수업(2)



들어가며 

 

지난 에서는 이더리움 코어 엔진인 geth을 설치하고 다뤄보면서 이더리움 플랫폼과 프로그래밍의 개괄적인 내용에 대해 살펴 보았습니다사용자 계정을 만들고 이들 간에 가상화폐를 주고 받고 ,  주고 받는 작업을 블록체인에 연결하기 위해 마이닝이라는 작업을 하였습니다이번에서 실제 이더리움이 제공하는 가장 유용한 기술이자 비트코인 플랫폼과 차별화되는 대표 기능인 스마트 컨트랙트를 솔리디티(Solodity) 개발 언어를 이용하여 프로그래밍하는 방법과 개발 환경 구축 등에 대해 살펴보겠습니다.   


 

// 솔리디티(Solidity) 프로그래밍에 앞 서 기억해야  들.

 

go-ethereum 1.6.0 이후 버전부터 geth 상에서 RPC API 호출을 사용하여 솔리디티 검파일러인 solc를 호출하여 Solidity 소스를 컴파일수 없습니다.  따라서 geth 엔진상에서 solidity compiler RPC 호출하여 컴파일할  있는 getCompilers() API 1.6.0 버전 이후에는 작동하지 않습니다.

 

 web3.eth.getCompilers()

 

 

"Method does not exist/is not available" eth.getCompilers(), in geth console to eth_compilers, eth_compileSolidity are gone in go-ethereum 1.6.0

 

참고 : #3740에서 해당 기능 삭제되었고 #290에 그 이유가 설명이 되어 있습니다. web3에서 제공하는 객체중 eth 객체는 이더리움 노드의 코어 기능과 관련된 것들을 담당하는 데 solc 컴파일러 호출은 이 범위를 벗어나기 때문에 삭제했다고 합니다. 또한 이더리움은 저차원 EVM 바이트 코드를 처리해야 하는 데 고수준의 프로그래밍 언어와 관련된 API를 호출하는 것은 바람직하지 않다라는 입장입니다. 이해도 가는 만 이 기능은 아주 유용하고 편리한 기능한 기능이라 반드시 지원이 되었으면 합니다.

 

// 솔리디티 개발환경을 준비합니다.

 

솔리디티 프로그래밍을 위해서는 직접 로컬 컴퓨터상에 솔리디티 컴파일러를 설치하거나 Remix(aka.Brower-solidity) 같은 개발 도구를 사용하는 방법이 있습니다.  Remix 외에도 Ethreum Studio 처럼 여러 개발 툴들이 있으나 Remix가 가장 편리합니다. 왜냐하면 다른 복잡한 것을 설치할 필요없이  브라우져를 통해 항상 최신 버전을 사용할 수 있기 때문입니다

 

Remix를 사용하기 위해 다음의 주소로 접속합니다.  참고로 OSX에서 사파리10.1.1.에서 작동이 원활치 않았고 , 크롬 59.0.3071.115 빌드에서는 사용하는  문제가 없었습니다. 여기서는 크롬을 기준으로 합니다.

 

https://remix.ethereum.org 

 

만약 온라인으로 접속하지 않고 로컬 컴퓨터 상에 Remix를 설치하여 사용하고 싶으면 Remix 소스 코드를 다운로드를 받은  사용하면 됩니다.  다음은  Brower-solidity 의 다운로드 링크입니다.

 

https://github.com/ethereum/browser-solidity/archive/master.zip

 

 

// Remix 를 사용법을 익혀 봅니다.

 

모든 제품을 사용하기 전에 매뉴얼은 한번 읽어 보는  낭패를 당하거나 시간을 낭비하지 않는 지름길이라 생각합니다적어도 어디에 뭐가 있는지는 알아야 제대로 활용할  있듯이 Remix로 솔리디티 개발을 위해서는 Remix 개발 환경에 대한 이해가 반드시 필요하다 생각합니다.  차근차근 살펴보면서 동시에 Solidity 프로그램도 함께 익숙해져 보겠습니다.



[그림 2-1 ] Remix 접속 후 첫화면. 총 3개의 영역(컬럼)으로 구성되어 있다.

 

Remix는 3 영역으로 구성되어 있습니다 - 가장 왼쪽이 소스코드 브라우져 , 가운데가 소스코드 에디터 , 그리고 오픈쪽이 컨트랙의 컴파일  배포, 디버깅, 분석 등 다양한 관련 옵션 등을 처리하는 영역입니다.

 

// 소스파일 브라우져 영역 알아보기

 


[그림2-2] 소스 파일 영역

 

소스 파일 영역에서 <<+버튼 메뉴>>는 신규 파일 생성 , 그리고 <<폴더 버튼>> 로컬 파일 열기 , 그리고 마지막 <<체인 버튼>> 특정 로컬 폴더을 연결하여 사용하는 기능입니다실제 작업을 하다보면 체인 버튼이 아주 유용한데  부분은 나중에 뒤에서 별도로 설명하겠습니다. 최초 설치 후 소스 파일 영약에 제공되는 Ballot.sol Remix에서 제공하는 기본 예제 파일입니다.

 



[그림2-3] 소스 코드 에디터 영역

 

-소스 코드 편집 영역

중간은 소스코드 편집 영역으로 <<+버튼>> 폰트 크기를 크게 ,  <<- 버튼>> 폰트 크기를 작게 해줍니다멀티 파일을 열어서 작업할 수 있습니다.

 

-컨트렉 조정 영역

마지막은 컴파일 및 배포 등 컨트롤 영역입니다.  이 영역을 잘 이해해야 솔리디티 개발을 고생하지 않고 할 수 있습니다. 

 


[그림2-4] 컨트랙 조정 영역

 

컨트랙 조정 영역중 Contract 탭에는 Environment 메뉴가 있는데 3개의 실행 환경 모드를 제공합니다 - Javescript VM , injected Web3 , Web3 provider.

 

다음은 각 실행 모드에 대한 설명입니다.

 

  • Javescript VM - geth 노드 연결 없이 모든 개발이 로컬 컴퓨터의 Remix의 메모리상에서 이루어짐
  • injected Web3 - Mist나 Metamask같이 Mist와 유사한 공급자에 의해 제공되는 실행 환경을 이용
  • Web3 provider - 로컬 컴퓨터에서 작동되는 geth 노드에 연결하여 수행됩니다. 이 환경에서는 트렌젝션이 네트웍을 통해 전달될 수 있음.

 

위의 세가지 환경 중 가장 편리한 것이 Javascript VM입니다. 첫번째 수업해서 설명한 것처럼 보통 개발자가 컨트렉트를 만들고 이를 컴파일한 후 블록체인 상에 배포하고 작동시키기 위해서는 마이닝 작업을 통해 Ether와 Gas가 미리 준비되어 있어야 합니다. 또한 구동중인 Geth 노드에  RPC 로 연결하여 컴파일된 솔리디티 바이트코드를 EVM에 배포하고 이를 다시 이더리움 체인에 연결하기 위해 다시 마이닝하는 등 여러 작업들을 해야 만 트렌젝션의 실행 결과를 확인할 수 있습니다. 다행스럽게도 Remix의 Javascript VM 환경을 이용하면 이러한 모든 작업을 로컬 메모리상에서 Remix 에서 미리 준비해둔 자바스크립트 VM모듈을 통해 수행가능합니다. 따라서 본 수업에서는 Javascript VM 환경을 기본 환경으로 사용합니다. 실제  Javascript VM 환경으로 개발을 하고 이후 Web3 Provider 환경을 통해 실제 로컬에 설치된 geth 노드에 RPC로 연결하여 작업을 하면 편리합니다. 보통 개발자들이 개인 개발 환경에서 작업을 하고 이를 개발 이나 스테이징 환경에 올려서 테스트 하는 것과 동일한 하다고 생각하면 됩니다.

 

***************************************************

$$ 정확히 알고 가자. : Ether와 Gas

 

Remix 에서 <<Contract 메뉴>>를 보면 Gas Limit 이라는 항목이 있습니다. Gas는 한마디로 이더리움에서 트렌젝션을 실행시키기 위해 필요한 수수료입니다. 이더리움에서는 트렌젝션들이 모여 블럭이 되고 , 이 블럭을 체인에 연결하기 위해서는 마이닝 작업을 통해 해쉬 계산을 하고 합의 과정을 거쳐 가장 빨리 계산한 마이너가 해당 블록을 체인에 연결을 합니다. 이러한 블록 하나를 연결할 때 마이너는 현재 0.25 Ether를 받습니다. 또한  해당 블럭내에 있는 트렉젝션을 수행하기 위해 EVM 을 작동시키는 데 드는 대가를 Gas로 받습니다.  

 

트렌젝션 수수료를 Ether로 주지 않고 Gsd라는 단위를 사용하는 이유는 무엇일가요? 바로 Ether는 가상 화폐이기 때문에 변동성이 생길 수 있으나 Gas는 거의 변동이 되지 않습니다. 따라서 트렌젝션을 수행하는 EVM은 계산량에 따라 고정된 Gas 값을 받습니다. 이더리움의 가스 가격의 변동 차트를 보면 거의 변동이 없습니다.

 

https://etherscan.io/chart/gasprice , 이더리움 가스 가격의 변동 차트

 

Gas Limit은 트렌젝션 처리에 쓸 수 있는 Gas 최대 한도비용입니다. 이 비용이 높을 수록 트렌젝션이 우선 처리가 될 수 있습니다. 그러나 트렌젝션 처리시   Gas Limit을 초과하면 트렌젝션이 중단되고 Gas는 그냥 소비되게 됩니다.

 

*****************************************************

 

// 컨트랙트 배포(Create)

 

Remix는 원격지에 있는 solc 컴파일러를 사용하여 컴파일을 합니다. <<Setting메뉴>>에 들어가면 기본값으로 컴파일 옵션이 <<Auto Compile>>로 설정되어 있습니다. 반복해서 주기적으로 컴파일을 하기 때문에 불편하면 해제해 놓아도  됩니다.

 

Contract 탭에서  <<Create 버튼>>는 작성된 컨트랙을 geth 노드에 배포합니다. 물론 Web3 provider 환경에서 배포를 하기 위해서는 RPC설정이 된 상태로 geth가 미리 작동이 되고 있어야 합니다. 또한 컨트렉을 배포할 때 잠시 생각을 해 보면 이런 의문점이 생깁니다. 이더리움은 어카운트가 기본인데 계정은 어떻게 되나? 그리고 컨트랙을 배포할 때는 당연히 비용을 지불해야 하는 데 어떻게 되는 거지?   

 

잠시 생각해 보겠습니다. 먼저 Contract은 원래 Contrace Account 의 줄임말입니다. 따라서 컴파일 후 배포가 되면 자동으로 해당 컨트렉트 계정이 생기고 컨트랙트 주소가 만들어 집니다. 대신 일반 사용자 계정 ( EOAs , Externally Owned Accounts)과는 구별이 됩니다. 실제 컨트렉트 계정은 사용자 계정에 의해서만 작동되고, 작동되면 컴파일된 코드에 의해서만 컨트롤이 됩니다.  그리고 당연히 코드를 이더리움 상에 배포시 대가를 지불해야 합니다. 다행이도 Remix의 Javascript VM환경에서는 이 대가를 Remix 대신 처리를 해주니 별도의 마이닝 작업 등을 할 필요가 없습니다. 물론, Web3 provider 환경에서는 미리 Ether를 할당해 높거나 마이닝을 통해 직접 처리해야 합니다.

 

<<Create 버튼>>을 클릭하여 배포를 하면 아래 [그림2-5]처럼 ballot 컨트렉트를 컨트롤 할 수 있는 다양한 버튼들이 나타납니다. 분홍색으로 표시된 각 트렌젝션들은 실제 해당 값을 입력하여 실행하면 그 결과를 바로 확인할 수 있습니다.

 


[그림2-5] 컨트랙 배포 후 화면

 

// web3 provider 환경 사용하기

 

로컬 컴퓨터 상의 구동중인 geth 노드에 연결하여 사용하고 싶다면 web3 provider 환경 옵션을 선택해야 합니다.  <<web3 provider >>옵션을 선택하면 다음과 같이 로컬에 있는 이더리움 노드와 연결을 원하는 지 다시 한번 묻는 팝업 윈도우가 나타납니다.

 


[그림2-6] <<web3 provider >>옵션 선택 후 팝업 화면

 

<<확인>>버튼을 선택합니다. 다음과 같이 이더리움 노드의 IP 주소와 RPC 포트를 묻는 팝업 윈도우가 나타납니다.

 


[그림2-7] <<web3 provider >>옵션에서 서버의 Endpoting 입력  화면

 

 

로컬 컴퓨터의 IP 주소와 RPC 포트인 8080을 입력합니다. 수업1에서 우리는 이미 다음과 같이 로컬컴퓨터상에서 이더리움 노드를 작동시켜 놓았습니다.

 

MacBook-Pro:go-ethereum jhpark$  geth167 --identity "JayBlockChain" --rpc --rpcaddr "127.0.0.1" --rpcport "8080" --rpccorsdomain "*" --datadir "/Users/jhpark/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain" --port "30303" --nodiscover --rpcapi  "db,eth,net,web3,personal" --networkid 1999 --mine console

 

// 개발시 로컬 폴더 연결하여 활용하기

 

Remix는 웹 기반이기 때문에 작업을 하다 보면 로컬상의 폴더를 연결해서 쓰면 편하겠다라는 생각이 듭니다. 앞서 살펴본 소스 파일 브라우져 영역에서 <<체인 버튼>>이 바로 로컬 파일을 연결하는 기능입니다.

 

해당 <<체인 버튼>>을 클릭하면 다음과 같이 로컬 파일을 연결하겠느냐라는 팝업 윈도우가 나타납니다.

 

[그림2-8] 로컬 폴더를 연결하겠느냐는 확인 팝업 윈도우

 

연결을 위해 <<Connect 버튼>>을 선택하면 다음과 같이 로컬 컴퓨터의 특정 폴더를 연결할 수 있습니다. 연결된 후에는 <<Connect 버튼>>이 녹색으로 변경됩니다.

 

 [그림2-9] 로컬 호스트 상의 특정 폴더를 연결한 후의 모습

 

 그런데 이렇게 특정한 로컬 폴더에 연결을 하기 위해서는 remixd라는 모듈을 설치하고 구동시켜야 만 합니다.


 

 //로컬 폴더를 연결하기 위해 remixd 설치하기

 

 remixd를 설치하기 위해서는 npm 이 필요합니다.  Npm(Node.js package echosystem)은 오픈소스 자바 스크립트 패키지 관리툴입니다. node.js 를 설치하면 자동으로 함께 설치됩니다. 

 

 먼저 , http://nodejs.org 에서 설치 파일을 다운로드 합니다. 제 경우 macOS용 V6.11.2 LTS버전을 다운로드 받아 설치했습니다. 설치 후 npm으로 다음과 같이 remixd 설치합니다.

 

    npm install -g remixd

  MacBook-Pro:~ jhpark$ npm install -g remixd

 

   remixd 설치 후 다음과 같이 Remix에서 연결하여 사용하고 싶은 공 폴더를 -S옵션과 함께 지정하여 remixd 를 구동 시킵니다여기서는 /Users/jhpark/go-ethereum/contracts를 공유하였습니다. 

 

   remixd -S [로컬에서 공유할 폴더 위치]

 

 cBook-Pro:contracts jhpark$  remixd -S /Users/jhpark/go-ethereum/contracts

 [WARN] Any application that runs on your computer can potentially read from and write to all files in the directory.

 [WARN] Symbolinc links are not forwarded to Remix IDE

 Shared folder : /Users/jhpark/go-ethereum/contracts

 Fri Aug 04 2017 09:23:45 GMT+0900 (KST) Remixd is listening on 127.0.0.1:65520

 

 이제 Remix에서 공유한 폴더를 소스 파일 브라우져에서 연동하여 사용할 수 있습니다.


 

 // 첫번째 솔리디티 프로그램 작성 : SimpleStorage.sol 

 

 자 이제 어느 정도 준비가 되었으니 첫번째 아주 간단한 프로그램을 하나 작성하여 작동시켜 보겠습니다.

먼저 , Remix의 파일 브라우져 영역의 <<+ 메뉴>>를 선택하여 새로운 파일을 생성하고 다음의 내용을 입력합니다. 

이 경우 프로그램 파일은 로컬 브라우져 상에 저장이 됩니다. 가장 편리한 방법은 앞서 Remixd를 통해 공유한 

로컬 폴더내에 해당 파일을 원하는 에디터로 작성하는 것 입니다. 일단 파일을 작성하면 자동으로 Remix가 Remixd를

통해 해당 파일을 읽어 옵니다. 제 경우 /Users/jhpark/go-ethereum/contracts 폴더 밑에

SimpleStorage.sol를 vi를 사용하여 작성하였습니다.

 

pragma solidity ^0.4.0;

    contract SimpleStorage {

        uint storedData;

function set(uint x)

        {

            storedData = x;

        }

        function get() constant returns (uint)

        {

            return storedData;

        }

    }

 

위의 예제는 솔리디티 가이드 문서에서 첫번째로 나오는 예제 파일입니다. 보다 자세한 내용은 아래 링크를 참고하세요.

 

참고 : 솔리디티 개발 문서 : https://media.readthedocs.org/pdf/solidity/develop/solidity.pdf

 

작성 후 컴파일시 문법적 오류가 없다면  아래와 같은 화면이 나타납니다. 앞서 설명드린 것처럼 Remix는 auto compile을 합니다 ( <<settings 메뉴>> ).

 




 [그림2-10] SimpleStorage.sol 컴파일 후 화면

 

 이 프로그램은 무척 단순합니다solidity ^0.4.0은 솔리디티 0.4.0으로 작성되었으니 업그레이드된 컴파일러가 나오더라도 이 파일은 0.4.0 방식으로 처리해 달라는 의미이며 , SimpleStorage  라는 이름의 contract는 내부의 상태가 256비트 크기의 unsigned integer 타입인 storedData와 이 상태에 값을 추가하는 set 이라는 이름의 function과 상태의 값을 알려주는 get function으로 구성되어 있습니다. 특별한 사용자 계정에 의해 조작되는 것이 없기 때문에 누구나 SimpleStorage를 이용해서 상태 값을 설정하거나 조회할 수 있습니다.

 

 작동을 시켜 보겠습니다!!.

 

 오른쪽에 <<Create>> 버튼을 눌러 컴파일된 솔리디티 바이트코드를 배포하겠습니다. 배포 후 [2-11] 처럼 화면 하단에 SimpleStorage 컨트렌트의 트렌젝션과 실행 비용에 대한 Gas 비용, 그리고 컨트렉트 주소 등이 나타납니다.

 

 


 [그림2-11] 배포 된 후 SimpleStorage 컨트렉트

 

 그리고 재미나게도 함수 set은 트렌젝션, get은 Call이라고 합니다. 왜 같은 함수를 구별할까요? 제 생각에 트렌젝션은 상태의 변화를 가져오는 것이고 , Call은 상태변화가 없어서 구별하는 것이 아닐까 싶습니다. 이후 계속 맞는 지 확인해 보겠습니다.

  

 

set 트렌젝션에 1000 을 입력하고 버튼을 눌러 작동을 시킵니다. 

 

 [그림2-12] SimpleStorage 컨트렉트의 set 트렌젝션 실행




 set함수 실행 후 get 버튼을 클릭하여 수행하면 다음과 같이 내부의 상태 값이 1000으로 바뀐 것을 확인할 수 있습니다.

 


 [그림2-13] SimpleStorage 컨트렉트의 get 실행

 

 

마치는 말

 

지금까지 본격적인 스마크 컨트랙트 개발에 앞서  Remix를 사용하여 솔리디티 언어로 스마트 컨트랙트를 작성하고 이를 실행하는 등 기본 사항들을 살펴 보았습니다. 다음부터는 본격적으로 솔리디티를 통한 스마트 컨트렉트 프로그래밍에 대해 살펴 보겠습니다. 프로그래밍을 하면서 필요한 개념과 용어는 중간에 지속적으로 소개하도록 하겠습니다. 혹시, 잘못된 내용이나 추가할 내용있으면 지속적으로 알려주시면 수정하도록 하겠습니다. 




저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

Posted by 박재현



이더리움 프로그래밍 수업(1)



들어가며 


비트코인과 블록체인, 그리고 이더리움에 대한 여러 자료들을 관련 사이트 등에서 찾아보면서 해당 내용이 이더리움 플랫폼의 최신 내용들과 다른 내용이 많아 테스트를 하거나 실제 프로그래밍을 하는 데 소소한 어려움이 많은 것을 느꼈습니다. 그리고 Ethereum.org 공식 채널을 포함, 주변에서 검색을 통해 접할 수 있는 이더리움 개발 관련 자료들이 적고 , 오래된 자료들이 많은 상황입니다. 따라서 Seoul Ethereum Meetup 멤버들과 기타 이더리움 개발을 하려는 분들의 손쉬운 이더리움 입문을 위해 포스팅을 시작합니다. 저도 함께 배우는 과정이기에 다소 부족한 부분이 많을 수 있으나 함께 채워나갔으면 합니다. Mac  운영체제를 기준으로 작성하며 , 만약 이 포스팅에 문제가 발생할 경우 알려주면 계속해서 업데이트할 계획입니다. 

이번 가이드를 통해 이더리움의 구동 환경을 이해하고 , 실행환경을 구축하며 , 이더리움의 가상화폐인 Ether를 발행하고 이를 다른 사용자에게 송금하면서 이더리움의 기본인 가상화폐를 다루는 것을 익힐 수 있습니다.

 

이더리움 프로그램 구동 환경 이해

 

다음은 간략한 이더리움 실행 환경입니다. Virtual Box 라는 가상화 엔진상에 geth라는 EVM(Ethereum Virtual Machine)가 위치합니다. 이 코어 엔진상에서 실행가능한 프로그램을 개발하는 것이 이더리움 프로그래밍입니다.

 

자바스크립트나 파이썬 같은 기존의 언어들을 사용하여 프로그램을 작성해도 EVM에서 구동이 되기 때문에 이더리움을 튜링 컴플리트(Turing Complete)라고 합니다. 어렵게 생각말고 지금은 이더리움에서 일반 개발 언어를 사용해서 가능한 모든 것을  작성할 수 있다" 라고 이해하면 됩니다. 참고로 , 비트코인은 튜링 컴플리트가 아닙니다.  보안 등 여러 이유로 if 문 만을 제공하는 등  의도적으로 제한된 범위 내에서만 개발을 지원합니다.

 

현재 이더리움 엔진은 Go 언어와 C++ , 파이썬 등으로 개발되었고 Go언어 만든 Go-Ethereum이 가장 업데이트가 활발합니다(바이너리 이름이 geth입니다).  본 글에서도 Go-Ethereum을 사용합니다.  다음은 앞서 설명한 내용을 정리하였습니다. 본래 노트에 글쓰기를 좋아해서 노트한 것을 그냥 올립니다. 지저분해도 이해해 주세요. 

 


 

이더리움 엔진인  geth 은 3가지 인터페이스를 통해 활용이 가능합니다 


(1) HTTP JSON RPC (2) web3.js 를 통한 자바스크립트 언어 (3) Solidity . 

 

위의 인터페이스를 다양한 언어로 이더리움 클라이언트를 개발할 수 있습니다. 가령, 자바 스크립트로 Web3.js를 사용하여 이더리움 클라이언트를 개발할 수 있습니다.  또는 JSON RPC 호출 후 자바로 클라이언트를 개발할 수도 있습니다.  그러나  이더리움 개발의 꽃인 Smart Contract를 개발하기 위해서는  Solidity, Serpent, LLL 언어를 사용해야 합니다. 이 중 가장 널리 사용되고 있는 Solidity 를 사용하겠습니다. 참고로 , 아직 Solidity는 개발 지원툴의 지원도 부족하고 여러 면에서 부족하나 이더리움의 성장과 더불어 개발자에게 스스로의 가치를 높일 수 있는 좋은 기회가 될 것 입니다. 또한 자바 스크립트와 비슷하여 국내 개발자 분들에게 적합하리라 생각합니다.

 

다음은 이더리움의 전체 구동 환경을 정리한 그림입니다.  먼저 상단의 왼쪽을 보면 콘솔과 브라우져가 등장합니다.  사용자는 geth를 구동시킨 후 콘솔을 통해 일련의 콘솔 명령어를 통해 원하는 기능을 geth에게 지시할 수 있습니다. 더불어 Json RPC와 Web3.js 자바스크립 라이브러리로 작성된 프로그램을 브라우져를 통해 구동시킬 수 있습니다. 

 


 

하단부 왼쪽은 Smart Contract에 대한 구동 환경입니다. 개발자는 Solidity로 프로그램을 작성한 후 Solc 컴파일러를 통해 컴파일을 합니다. 컴파일된 결과는 바이크 코드 형태의 Contract입니다.  이 Contract를  geth에 배포하면 블록체인의 블록 형태로 저장되고 이후 EVM을 통해 실행됩니다.   이더리움이 P2P 이기 때문에 해당 Contract 는 다른 모든 이더리움 노드에도 복제가 되어 실행이 됩니다.  이 과정을 잘 이해하려면 이더리움이 Account 개념을 잘 이해해야 합니다. 간략히 이해를 돕기 위해 설명하면 이더리움의 모든 기본 단위는 Account 입니다.  이더리움 지갑 등을 만들 때 실제 사람 사용자가 만드는 Account가 있고( EOAs , Externally Owned Accounts ) , Contract Accont가 있습니다. 모든 Contract는 실제 Accont로 다뤄집니다.  이후에 좀 더 자세히 살펴보겠습니다. 

 

 

이더리움 설치 및  프로그래밍 환경 꾸미기

 

1. 먼저 다음 3개의 오픈 소스 툴과 언어를 설치하여 사용 준비를 합니다.

 

-Brew : Mac OSX용 패키지 관리자 

-Go : Go-Ethereum 설치용 Go 컴파일러

-Geth : Version 1.6.7 ( 2017년 7월 30일 현재 최신 버전 , 버전에 따라 변경되는 것들이 많아 가능한 최신 버전으로 학습하는 게 유리합니다. 많은 자료들이 이전 버전으로 작업된 것이라 최신 버전에서 오작동할 가능성이 많습니다)

 

 

1) 먼저 Brew 를 설치합니다. 터미널에 다음의 명령어를 입력합니다.

 

 /usr/bin/ruby -e "$(curl -fsSL   https://raw.githubusercontent.com/Homebrew/install/master/install)"

 

 

2) 다음의 Go 공식 웹 사이트에 가서 Mac OSX 용 패키지를 다운로드 받아 설치합니다.  본 글에서는 1.8.3 을 사용합니다.

 

http://golang.org/dl

 

3) 다음으로 Geth을 설치합니다. 현재 Geth의 최신 버전은  V1.6.7 로 해당 버전을 사용합니다..

 

다음에서 Geth의 소스코드를 다운로드 받는다.

 

- 다운로드 Geth 1.6.7.(ZIP)    

 

또는 다음과 같이 git을 사용하는 방법도 있습니다.

 

git clone -b release/1.6.7 https://github.com/ethreum/go-ethreum.git

 

다운로드 받은 해당 디렉토리로 이동 후 다음 명령을 실행하여 소스코드를 컴파일합니다.

 

$>> make geth

 

JAEHYUNui-MacBook-Air:go-ethereum-1.6.7 jaehyunpark-air$ make geth

build/env.sh go run build/ci.go install ./cmd/geth

>>> /usr/local/go/bin/go install -ldflags -s -v ./cmd/geth

 

4) 기타 환경 꾸미기

 

컴파일 후 "현재 설치한 폴더 밑에 /build/bin 폴더"에 geth 라는 실행 파일이 생성됩니다. geth 파일은 다른 라이브러리나 패키지에 dependency가 없기 때문에 원하는 폴더로 옮겨도 작동됩니다.  참고로 , 현재 Geth 소스코드는 Go언어로 개발되었기 때문에 컴파일시 Go 컴파일러가 필요하다.  Go1.8.3을 사용하여 컴파일 합니다.

 

* 참조 : https://github.com/ethereum/go-ethereum/wiki/Installing-Geth#build-it-from-source-code )

 

여러 버전의 Geth를 사용할 수 있기 때문에 편의상 alias를 만듭니다. 아래에서는 /Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/geth를 geth167로 alias합니다.  이후 geth167로 이더리움을 구동시킵니다.

 

JAEHYUNui-MacBook-Air:bin jaehyunpark-air$ echo "alias geth167='/Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/geth' " >> ~/.bashrc

 

실제 쉘에 위의 내용을 반영을 해줍니다. 매번 로그인시 마다 적용을 위해서는 .profile 에 해당 내용을 반영해 둡니다. 편의를 위해 하는 작업입니다.

 

JAEHYUNui-MacBook-Air:bin jaehyunpark-air$   source ~/.bashrc

 

이제 geth167 을 입력하면 바로 geth를 실행시킬 수 있다.

 

 

이더리움 엔진 갖고 놀아보기

 

이제 이더리움 엔진을  프라이빗 네트웍에서 구동시키고 다뤄보겠습니다. 가이드를 보면 프라이빗 블록체인을 구성할 때 4가지에 신경쓰라고 합니다.

 

- 커스텀 제네시스 파일 설정을 통해 최초의 이더리움 블록 생성

- 커스텀 데이타 디렉토리 설정을 통해 블록체인 스토리지 구성

- 커스템 네트웍 ID 설정을 통해 내가 구축한 프라이빗 블록체인 명명하기

- 프라이빗 네트웍에서 이용시 추천 사항으로 다른 노드와 연결하기 위해 자동으로 탐색하는 것을 방지하기

 

 

자 이제 슬슬 구동을 시켜 보겠습니다.

 

1)먼저 , 구동에 필요한 블록체인 데이타를 저장할 폴더로 privatechain을 생성한다.  원하는 이름으로 자유롭게 바꿔도 됩니다. 이 디렉토리 밑에 여러 개의 노드 관련 데이타를 구성할 생각입니다.

 

JAEHYUNui-MacBook-Air:bin jaehyunpark-air$   mkdir privatechain

 

 

다음의 구동 명령을 통해 geth를 실행시킨다.

 

 

geth167 --identity "JayBlockChain" --rpc --rpcport "8080" --rpccorsdomain "*" --datadir "/Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain" --port "30303" --nodiscover --rpcapi "db,eth,net,web3" --networkid 1999 console

 

위의 구동 명령 중 --datadir 이 커스텀 디렉토리를 설정하는 옵션입니다.그리고 커스텀 네트웍ID는 --networkid을 사용하여 1999로 설정하였고 --nodiscover 옵션을 지정하여 다른 노드에서 탐색하여 연결하는 것을 방지하였습니다. 이 설정을 하지 않으면 P2P 노드 연결을 위해 계속해서 ping 이 발생합니다.

 

--identity "JayBlockChain"   // 내 프라이빗 노드의 아이덴티티.

--rpc   // RPC 인터페이스 가능하게 함.

--rpcport "8080"  // RPC 포트 지정

--rpccorsdomain "*"  // 접속가능한 RPC 클라이언트 URL 지정 ,

// 가능한 *(전체 허용보다는 URL을 지정하는 게 보안상 좋음. 

--datadir "/Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain" // 커스텀 디렉토리 지정

--port "30303" // 네트웍 Listening Port 지정

--nodiscover   // 같은 제네시스 블록과 네트웍ID에 있는 블록에 연결 방지

--rpcapi "db,eth,net,web3"   // RPC에 의해서 접근을 허락할 API

--networkid 1999

  console  // 출력을 콘솔로 함.

 

 

참고로 마이닝이 가능하도록 구동시키려면 --mine 옵션을 설정해야 하는 데 이 설정이 작동되기 위해서는 미리 사용자 계정을 만들고 이 계정을 마이닝 작업 후 결과 Ether를 받을 Etherbase 설정한 후에야 유효합니다.

 

--mine  // 마이닝 모드로 구동 , Etherbase(coinbase) 설정 후 작동됨.

 

 

다음은 geth의 Command line options에 대한 설명입니다. 


* 참조 :  https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options

 

 

2) geth가 구동되었으면  이제부터 이더리움  콘솔상에서 자바 스크립트를 사용하여 작동시킬 수 있습니다. 이더리움 내부에 자바스크립트 런타임 환경을 구현했습니다.  먼저 Jay 라는 Account를 하나 생성합니다.  앞서 간략히 강조한 것처럼 이더리움에서 Account는 가장 중요합니다. 왜냐하면 모든 트렌젝션이 Account를 기준으로 작동되고 그 결과 Account의 상태를 바꾸는 방식으로 처리되기 때문입니다. 

 

다음부터는 구동된 geth 의 Command line 상에서 하는 작업입니다.

 

// Jay Account 생성

> personal.newAccount("Jay")

> personal.newAccount("Jay")

INFO [08-01|08:46:29] New wallet appeared                      url=keystore:///Users/jaehyunpark-a… status=Locked

0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662

 

// 다음의 명령으로 계좌 목록 조회할 수 있습니다.

eth.accounts

> eth.accounts

["0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662"]

  

// 다음으로 마이닝 후 보상을 받을 이더베이스(etherbase)를 지정합니다여기서는 앞서 만든  jay 어카운트로 지정합니다.

 

miner.setEtherbase(personal.listAccounts[0])

> miner.setEtherbase(personal.listAccounts[0])

true

 

 

personal.listAccounts[0]  0번째 Account를 말하는 것이고 , 다른 방법으로 Jay의 식별키를 지정해도 됩니다.

 

> miner.setEtherbase("0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662")

 

 

//이제 계정을 만들고 이더베이스를 설정했다면 마이닝을 하겠습니다. 마이닝 후 리워드 보상은 앞서 지정한 Jay 어카운트로 보내집니다.

 

miner.start()

> miner.start()

INFO [08-02|11:31:35] Updated mining threads                   threads=0

Null

 

다음과 같이 마이닝 쓰레드를 2개로 줄수도 있습니다.  - miner..start()

> miner.start(2)

INFO [08-02|11:31:49] Updated mining threads                   threads=2

null

 

 

일단 실행을 시키면  백드라운드로 수행을 합니다. 이후 작업이 끝나면 결과를 콘솔을 통해 알려줍니다.

INFO [08-02|11:37:14] Successfully sealed new block            number=4 hash=4300e0…bd850f

INFO [08-02|11:37:14] 🔨 mined potential block                  number=4 hash=4300e0…bd850f

INFO [08-02|11:37:14] Commit new mining work                   number=5 txs=0 uncles=0 elapsed=683.934µs

 

마이닝이 성공적으로 수행되면 다음의 명령어로 실제 받은 보상 결과를 알 수 있습니다.

 

// 첫번째 계정의 잔액 조회

eth.getBalance(eth.accounts[0])

> eth.getBalance(eth.accounts[0])

300000000000000000000

 

위의 결과를 보면 Jay 계정에 300 Ether가 생성되어 있습니다위의 표시는 Wei 이기 때문에 1/1018로 계산합니다.

 

// 생성된 블록 수도 조회해 볼 수 있습니다. 블록이 1개 생겨 있습니다.

eth.blockNumber

> eth.blockNumber

1

 

4) 프라이빗 네트웍에서 geth를 작동시키기 위해서는 먼저 커스텀 제네시스 파일을 생성한 후 이를 geth를 구동시 init 명령으로  함께 호출합니다. 제네시스 블록은 블록체인의 시작 블록이기 때문에 반드시 이를 만들어야 합니다. 제네시스 블록을 만든 후 프라이빗 블록체인은 자유롭게 만들 수 있습니다. 만일 프라이빗 제네시스 블록을 만들지 않고  default 제네시스 블록을 사용하려면 --dev 옵션을 사용하여 구동하면 됩니다.

 

제네시스 파일 생성은 아주 중요하기 때문에 아래 커스텀 제네시스 파일 생성시 문법과 체크가 엄격합니다. 이전 버전의 포맷과 문법이 작동안되는 경우가 많아 애먹을 수 있습니다. 문제가 생길 때는 기존 chain data를 모두 삭제 후 다시 구동시켜 해결하면 됩니다. deletedb API를 이용할 수 있으나 제대로 작동하지 않았습니다.

 

//커스템 제네시스 파일 생성 , CustomGenesis.json

{
    
"config": {
        
"chainId"15,
        
"homesteadBlock"0,
        
"eip155Block"0,
        
"eip158Block"0
    },
    
"difficulty""200000000",
    
"gasLimit""2100000",
    
"alloc": {
        
"0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662": { "balance""300000000000000000000" },
    }
}

 

위의 파일 설정 중 alloc은 마이닝 작업을 하지 않고서도 미리 해당 계정에 지정된 만큼 Ether를 할당하는 것 입니다. 여기서는 300Ether를 미리 할당 합니다.

 

다음과 같이 geth를 통해 CustomGenesis.json 파일을 구동시키고 제네시스 파일을 생성한다.

 

geth167 --datadir /Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain init CustomCenesis.json

 

 

JAEHYUNui-MacBook-Air:privatechain jaehyunpark-air$   geth167 --datadir /Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain init CustomGenesis.json

INFO [08-01|15:59:33] Allocated cache and file handles         database=/Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain/geth/chaindata cache=16 handles=16

INFO [08-01|15:59:33] Writing custom genesis block 

INFO [08-01|15:59:33] Successfully wrote genesis state         database=chaindata                                     hash=d76c57…a31e33

INFO [08-01|15:59:33] Allocated cache and file handles         database=/Users/jaehyunpark-air/go-ethereum/go-ethereum-1.6.7/build/bin/privatechain/geth/lightchaindata cache=16 handles=16

INFO [08-01|15:59:33] Writing custom genesis block 

INFO [08-01|15:59:33] Successfully wrote genesis state         database=lightchaindata                                hash=d76c57…a31e33

 


이더리움 이더 갖고 놀아보기 : 어카운트, 마이닝, 송금.

 

이제 송금을 해 보겠습니다. 송금을 위해 Susie 라는 계정을 하나 더 만듭니다.

 

// Susie 계좌 생성

> personal.newAccount("Susie")

 

> personal.newAccount("Susie")

INFO [08-01|16:15:36] New wallet appeared                      url=keystore:///Users/jaehyunpark-a… status=Locked

"0x87c4ef09c4e94249ed94b74d6d573c3dc902f15d"

 

어카운트를  조회해 보면 총 2개의 어카운트가 생성되었다는 것을 확인할 수 있습니다.

> eth.accounts

["0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662""0x87c4ef09c4e94249ed94b74d6d573c3dc902f15d"]

 

// Jay -> Susie 로 1Ether를 송금을 해 봅니다.

 

> eth.sendTransaction({from : '0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662', to : '0x87c4ef09c4e94249ed94b74d6d573c3dc902f15d' , value:web3.toWei(1,"ether")})

 

위의 트렌젝션을 실행하면 Jay 계정에서 돈을 옮겨야 하는 데 LOCK되어 있으니 Unlock 시키라고 합니다.

 

> personal.unlockAccount('0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662')

Unlock account 0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662

Passphrase: 

 Error: could not decrypt key with given passphrase

 

다음과 같이 JAY 계정의 UNLOCK을 시니다.

 

personal.unlockAccount('0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662')

> personal.unlockAccount('0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662')

Unlock account 0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662

Passphrase: 

true

 

또는 다음과 같이 해도됩니다.

>web3.personal.unlockAccount("0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662")

  

패스워드를 묻는 데 Jay 라고 계정 이름을 넣으면 됩니다. 대소문자 구별을 합니다. 다시 송금 트렌젝션을 수행하면 다음과 같이 잘 작동합니다.


> eth.sendTransaction({from : '0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662', to : '0x87c4ef09c4e94249ed94b74d6d573c3dc902f15d' , value:web3.toWei(1,"ether")})

INFO [08-01|17:03:49] Submitted transaction                    fullhash=0x265514bd911fbb8dab9cb54a7e5be57c35ce445cb07d1762cd0f0f61b78a5843 recipient=0x87c4ef09c4e94249ed94b74d6d573c3dc902f15d

"0x265514bd911fbb8dab9cb54a7e5be57c35ce445cb07d1762cd0f0f61b78a5843"

 

그런데 바로 트렌젝션이 수행되지 않습니다. Ether가 부족하거나 트렌젝션의 부정이 아니라는 것을 계산하는 등 정합성을 Mining을 통해 테스트를 해야 합니다.

 

다음으로 펜딩중인 트렌젝션을 확인할 수 있습니다.

>eth.pendingTransactions   // 미확정 트렌젝션 확인


> eth.pendingTransactions 

[{

    blockHash: null,

    blockNumber: null,

    from: "0xb2cf02bea7e2538a90b634fcbe2cbf1dd9ee6662",

    gas: 90000,

    gasPrice: 18000000000,

    hash: "0x1bfdad2d242b36c5a4662c29b0edb919e4a539de3edeec876d8c8e9679c3b706",

    input: "0x",

    nonce: 2,

    r: "0x4f9382cfb484c60565363d08a302d6e38e76cbd1ffb2877e840e2559348775e1",

    s: "0x58f5e424ada1282d71cf9fead65777bbc86ff4884126a2442dd06c2c05c739ab",

    to: "0x87c4ef09c4e94249ed94b74d6d573c3dc902f15d",

    transactionIndex: 0,

    v: "0x41",

    value: 1000000000000000000

}]

 

다시 마이닝을 수행시켜 이더리움 블록내에 전달된 송금 트렌젝션의 정합성을 계산하고 문제가 없으면 체인내에 블록을 연결합니다. 이 연결이 실제 마이닝 작업 결과이자 송금이 완료되는 것 입니다.   

 

>miner.start()

> miner.start()

INFO [08-02|12:09:22] Updated mining threads                   threads=0

INFO [08-02|12:09:22] Transaction pool price threshold updated price=18000000000

null

INFO [08-02|12:09:22] Starting mining operation 

INFO [08-02|12:09:22] Commit new mining work                   number=5 txs=1 uncles=0 elapsed=31.313ms

 

INFO [08-02|12:10:56] Successfully sealed new block            number=5 hash=ae00c8…b8ca2b

INFO [08-02|12:10:56] 🔨 mined potential block                  number=5 hash=ae00c8…b8ca2b

INFO [08-02|12:10:56] Commit new mining work                   number=6 txs=0 uncles=0 elapsed=1.215ms

 

 

//다음으로 펜딩중인 트렌젝션을 확인할 수 있습니다.

>eth.pendingTransactions   // 미확정 트렌젝션 확인

> eth.pendingTransactions 

[]

 

//다음으로 Susie의 Account에 Ether가 송금됨을 확인할 수 있습니다.

eth.getBalance(eth.accounts[1])

> eth.getBalance(eth.accounts[1])

100000000000000000000

 

 

마치며 

 

지금까지 Ether 콘솔상에서 personal , eth , web3 , miner 객체를 통해 이더리움 엔진을 다뤄봤습니다. 이를 이용하여 이더리움의 구동 환경과 실행 환경을 구축하며 , 이더리룸의 가상화폐인 Ether를 발행과 송금 등을 통해 이더리움 플랫폼에 대한 이해를 하였습니다. 


오랜만에 다시 이것저것 엔진을 만지며 다시 여러가지 코드 조각을 만들어 보니 1998년 CORBA 엔진을 만들던 때가 떠오릅니다. 아마 당시에도 오픈소스 커뮤니티가 지금처럼 활성되었다면 더욱 크게 발전했을텐데 CORBA 자체의 개발 환경이 열악하다 보니 개발하는 데 많은 어려움이 많았습니다. 현재 이더리움도 초기 상태라 비슷한 상태로 보이는 데 조속히 멋진 개발 및 운영 도구들이 필요해 보입니다.  


다음에는 실제 Contact 프로그램과  간략히 작성하고 수행하면서 전체적인 이해를 완료하도록 하겠습니다. 본업이 따로 있는 관계로 한주에 한편  정도로 ^-^ 같이하면 더 빨리 갈 수 있다는 것을 믿으며!!



저작자 표시 비영리 변경 금지
신고
크리에이티브 커먼즈 라이선스
Creative Commons License

Posted by 박재현


티스토리 툴바